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Abstract. We define a bi-Hamiltonian formulation for the relativistic Toda lattice with a
recursion operator onR2n. We use a theorem by W Oevel to generate higher order Poisson
tensors and master symmetries for the relativistic Toda lattice. These Poisson tensors and master
symmetries reduce toR2n−1.

0. Introduction

The relativistic Toda lattice was introduced by Ruijsenaars [1] and has been studied by
many authors, in particular, Bruschi and Ragnisco [2, 3], Oevelet al [4], Suris [5] and
Damianou [6]. It is a finite-dimensional completely integrable bi-Hamiltonian system. Its
bi-Hamiltonian formulation and its complete integrability were proven by using various
methods: Lax representation [3, 6], master symmetries [4, 6] and recursion operators [2, 4].

Fokas and Fuchssteiner [9] introduced master symmetries, also studied by Oevel and
Fuchssteiner [10] and Fuchssteiner [11].

In this paper we obtain a bi-Hamiltonian formulation for the relativistic Toda Lattice
(RTL) by introducing two compatible Poisson tensors onR2n which, by a suitable projection
map ontoR2n−1, reduce to the two compatible Poisson tensors of the RTL. Since one of the
Poisson structures introduced onR2n is nondegenerate, we have a recursion operator and the
bi-Hamiltonian structure of the RTL is, in fact, multi-Hamiltonian. Then, using a method
introduced by Fernandes [7] for the nonrelativistic Toda lattice, based on a theorem due to
Oevel [8], we determine master symmetries for the RTL. Our results answer a question put
by Damianou in [6].

In this paper, all the manifolds, maps, vector and tensor fields are assumed to be smooth.
Let us recall that abi-Hamiltonian manifoldis a manifoldM equipped with two compatible
Poisson tensors30 and31; it is denoted by(M,30,31). A vector fieldX onM is said to
be abi-Hamiltonian vector fieldif it is Hamiltonian with respect to both Poisson structures.
A recursion operatorfor (M,30,31) is a vector bundle mapR : TM → TM such that
3
]

1 = R ◦3]

0, where3]

0 : T ∗M → TM and3]

1 : T ∗M → TM are the vector bundle maps
associated with the Poisson tensors30 and31. A bi-Hamiltonian manifold for which there
exists a recursion operator is called aPoisson–Nijenhuis manifold[12].
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1. A bi-Hamiltonian formulation for the relativistic Toda lattice

We considerR2n with coordinates(q1, . . . , qn, p1, . . . , pn) and the canonical Poisson tensor

31 =
n∑
i=1

∂

∂qi
∧ ∂

∂pi
. (1)

Following Suris [5], we take(c1, . . . , cn−1, d1, . . . , dn) as variables onR2n−1, with

ci = exp(qi − qi+1+ pi) di = exp(pi) (2)

and we denote byπ : R2n→ R2n−1 the map

π : (q1, . . . , qn, p1, . . . , pn) 7→ (c1, . . . , cn−1, d1, . . . , dn). (3)

The relativistic Toda lattice is an integrable system onR2n−1, whose equations of motion
are {

ċi = ci(di+1− di + ci+1− ci−1)

ḋj = dj (cj − cj−1)
(4)

wherei = 1, . . . , n− 1, j = 1, . . . , n, with the conventionc0 = cn = 0.
The RTL is a bi-Hamiltonian system onR2n−1 for the following two compatible Poisson

tensors,

3̄0 =
n−1∑
i=1

ci

(
∂

∂ci
∧
(
∂

∂di
− ∂

∂di+1

)
+ ∂

∂di
∧ ∂

∂di+1

)
(5)

3̄1 =
n−1∑
i=1

ci
∂

∂ci
∧
(
−ci+1

∂

∂ci+1
+ di ∂

∂di
− di+1

∂

∂di+1

)
(6)

and the following two Hamiltonians,

H̄0 =
n∑
i=1

(ci + di) H̄1 =
n∑
i=1

(ci−1(ci + di)+ 1
2(ci + di)2). (7)

We observe indeed that the bi-Hamiltonian vector field

3̄#
0(dH̄1) = 3̄#

1(dH̄0) (8)

is the vector field associated with the evolution equations (4) of the RTL. By convention,
c0 = cn = 0 in (6) and (7).

We observe that the Poisson bracket associated with3̄0 is linear, while the Poisson
bracket associated with̄31 is quadratic.

A simple computation shows that the mapπ : (R2n,31)→ (R2n−1, 3̄1) (3) is a Poisson
morphism. In other words, under that map, the canonical Poisson tensor31 onR2n reduces
to the quadratic Poisson tensor3̄1 onR2n−1. This behaviour differs from the behaviour of
the nonrelativistic Toda lattice, for which the canonical Poisson bracket associated with31

reduces to a linear Poisson bracket onR2n−1.
Our goal is to provide a bi-Hamiltonian formulation onR2n for the RTL. Since31 is

nondegenerate, we will obtain a recursion operator for that system.
The first step is to define a Poisson tensor onR2n, compatible with the canonical Poisson

tensor31, which projects ontoR2n−1 under the mapπ (3), and has the linear Poisson tensor
3̄0 (5) as its projection.
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Proposition 1.1.Let 30 be the bivector onR2n:

30 =
n∑
i=1

exp(−pi) ∂
∂qi
∧
(
∂

∂pi
+

n∑
j=i+1

∂

∂qj

)
+

n−1∑
i=1

exp(qi − qi+1− pi+1)

×
((

∂

∂pi
+ ∂

∂qi+1

)
∧
(

∂

∂pi+1
+

n∑
j=i+2

∂

∂qj

)
− ∂

∂pi+1
∧

n∑
j=i+2

∂

∂qj

)
. (9)

Then,
(i) [30,30] = 0 and [30,31] = 0;
(ii) 3#

1(dH0) = 3#
0(dH1), with

H0 =
n∑
i=1

(exp(qi − qi+1+ pi)+ exp(pi))

and

H1 =
n∑
i=1

( 1
2(exp(qi − qi+1+ pi)+ exp(pi))

2

+ exp(qi−1− qi + pi−1)(exp(qi − qi+1+ pi)+ exp(pi)))

where, by convention,q0 = −∞ andqn+1 = +∞;
(iii) the mapπ : (R2n,30)→ (R2n−1, 3̄0),

(q1, . . . , qn, p1, . . . , pn) 7→ (c1, . . . , cn−1, d1, . . . , dn)

is a Poisson morphism.

Proof. A simple computation leads to the required results. Relations (i) and (ii) prove the
existence of a bi-Hamiltonian system onR2n, while (iii) ensures that30 reduces to3̄0. �

Since 30 is nondegenerate, we can define a recursion operator, by settingR =
3#

1 ◦ (3#
0)
−1. We obtain

R =
[
A B

C AT

]
whereA = [aij ], B = [bij ] andC = [cij ] are n × n matrices (AT is the transpose ofA),
defined as follows (with, by convention,qn+1 = +∞):

aii = exp(qi − qi+1+ pi)
ai,i+1 = exp(qi+1− qi+2+ pi+1)

aij = 0 if i > j

aij = exp(qj − qj+1+ pj )− exp(qj−1− qj + pj−1) if j > i + 1{
bij = −bji
bij = exp(qj − qj+1+ pj )+ exp(pj ) if i < j

and {
ci+1,i = −ci,i+1 = exp(qi − qi+1+ pi)
cij = 0 otherwise.

Since we have a recursion operatorR, we can now define onR2n an infinite sequence
of pairwise compatible Poisson tensors3k and an infinite sequence of HamiltoniansHk,
by setting3k = Rk30, dHk = tR(dHk−1). By the reduction theorem for bi-Hamiltonian
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manifolds [13], and taking account of proposition 1.1(iii), the infinite sequence(3k), k ∈ N0,
of higher-order Poisson tensors onR2n reduce, under the mapπ , to an infinite sequence
(3̄k), k ∈ N0, of pairwise compatible Poisson tensors onR2n−1.

For i = 2, the Poisson tensor32 is given by

32 =
n−2∑
j=1

∂

∂qj
∧
(

exp(qj+1− qj+2+ pj+1)
∂

∂pj+1

+
n−1∑
i=j+1

(
(− exp(qi+1− qi+2+ pi+1)− exp(pi+1))

∂

∂qi

+(exp(qi+1− qi+2+ pi+1)− exp(qi − qi+1+ pi)) ∂

∂pi+1

))
+

n∑
i=1

(
(exp(qi − qi+1+ pi)+ exp(pi))

∂

∂qi
∧ ∂

∂pi

− exp(qi − qi+1+ pi) ∂
∂pi
∧ ∂

∂pi+1

)
.

The corresponding reduced Poisson tensor3̄2 on R2n−1 is the Poisson tensor associated
with the cubic Poisson bracket that appears in [6] and also in [4].

2. Master symmetries for the relativistic Toda lattice

Now, we want to find master symmetries for the bi-Hamiltonian system built above, in
order to use the method of Fernandes [7], which is based on the following theorem.

Theorem 2.1 (Oevel).Let X0 be a vector field on the Poisson–Nijenhuis manifold
(M,30,31), such that

L(X0)30 = α30 L(X0)31 = β31 and X0.H0 = γH0 (10)

with α, β, γ ∈ R. Then the vector fieldsXk = RkX0 satisfy, for allk, l ∈ N,
(i) [Xk,Xl ] = (β − α)(l − k)Xk+l
(ii) [Xk, Yl ] = (β + γ + (β − α)(l − 1))Yk+l
(iii) L(Xk)3l = (β + (β − α)(l − k − 1))3k+l
(iv) Xk ·Hl = (γ + (β − α)(l + k))Hk+l .
In order to use this theorem, we need a vector fieldX0 that satisfies conditions (10).

Let us take

X0 =
n∑
i=1

∂

∂pi
. (11)

A simple computation leads to

L(X0)30 = −30 L(X0)31 = 0 X0 ·H0 = H0.

So we can apply theorem 2.1 withα = −1, β = 0 andγ = 1. Thus we have a hierarchy
of master symmetriesXk = RkX0, k ∈ N, that provides a way of obtaining higher-order
Poisson tensors onR2n. These master symmetries satisfy the following conditions:

[Xk,Xl ] = (l − k)Xk+l (12)

[Xk,3
#
l (dH0)] = l3#

k+l(dH0) (13)

L(Xk)3l = (l − k − 1)3k+l (14)

Xk ·Hl = (1+ l + k)Hk+l . (15)
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Proposition 2.1.The master symmetriesXk = RkX0, k ∈ N, are projectable vector fields
by the mapπ : R2n → R2n−1, (qi, pi) 7→ (ci, di). We denote byX̄k the projected vector
fields.

Proof. The fibres ofπ are integral curves of the vector field

Z =
n∑
i=1

∂

∂qi
.

SinceZ = −∑n
i=13

#
1(dpi), this implies [31, Z] = 0.

Further we obtain, by computation, [30, Z] = 0 and therefore [R,Z] = 0. Also,
[X0, Z] = 0 and we deduce

[Xk,Z] = [RkX0, Z] = 0.

For anyf ∈ C∞(R2n,R), we have

[Xk, fZ] = (Xk.f )Z + f [Xk,Z]

= (Xk.f )Z
which proves thatXk is a projectable vector field. �

Now, if we take the reduced vector fields̄Xk, the reduced Poisson tensors3̄k, the
reduced Hamiltonian vector fields̄Yk = 3̄#

k(dH̄0) and the reduced Hamiltonians̄Hk then,
taking account of relations (12), (13), (14) and (15), we deduce the following relations:

[X̄k, X̄l ] = (l − k)X̄k+l (16)

[X̄k, Ȳl ] = lȲk+l (17)

L(X̄k)3̄l = (l − k − 1)3̄k+l (18)

X̄k · H̄l = (1+ l + k)H̄k+l . (19)

Some of these relations already appeared in [6], although our vector fieldX̄1 differs
from the corresponding one in [6]—let us denote it byẊ1, by a bi-Hamiltonian vector field.
In fact, we compute

X1 =
n∑
i=1

(
(1− i)(exp(qi − qi+1+ pi)+ exp(pi))

+
n∑

j=i+1

(exp(qj − qj+1+ pj )+ exp(pj ))

)
∂

∂qi

+
n∑
i=1

(exp(pi)+ i exp(qi − qi+1+ pi)+ (2− i) exp(qi−1− qi + pi−1))
∂

∂pi

where, by convention,q0 = −∞ andqn+1 = +∞, andX1 projects onto

X̄1 =
n∑
i=1

(
((1+ i)ci(ci+1+ di+1)+ (2− i)ci(ci−1+ di)+ c2

i )
∂

∂ci

+(icidi + (2− i)ci−1di + d2
i )
∂

∂di

)
where, by convention,c0 = cn = 0. ComparingX̄1 with Ẋ1, we obtain

Ẋ1− X̄1 = 3̄#
1(dH̄0) = 3̄#

0(dH̄1).

Since the difference is the bi-Hamiltonian vector field̄3#
1(dH̄0), our higher-order

Poisson tensors̄3k coincide with those of [6].
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