Master symmetries and bi-Hamiltonian structures for the relativistic Toda lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 307551
(http://iopscience.iop.org/0305-4470/30/21/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:04

Please note that terms and conditions apply.

Master symmetries and bi-Hamiltonian structures for the relativistic Toda lattice

J M Nunes da Costa $\dagger \S$ and C-M Marle $\ddagger \|$
\dagger Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3000 Coimbra, Portugal
\ddagger Université Pierre et Marie Curie, Institut de Mathématiques, 4, place Jussieu, 75252 Paris cedex 05, France

Received 6 March 1997, in final form 16 June 1997

Abstract

We define a bi-Hamiltonian formulation for the relativistic Toda lattice with a recursion operator on $\mathbb{R}^{2 n}$. We use a theorem by W Oevel to generate higher order Poisson tensors and master symmetries for the relativistic Toda lattice. These Poisson tensors and master symmetries reduce to $\mathbb{R}^{2 n-1}$.

0. Introduction

The relativistic Toda lattice was introduced by Ruijsenaars [1] and has been studied by many authors, in particular, Bruschi and Ragnisco [2,3], Oevel et al [4], Suris [5] and Damianou [6]. It is a finite-dimensional completely integrable bi-Hamiltonian system. Its bi-Hamiltonian formulation and its complete integrability were proven by using various methods: Lax representation [3, 6], master symmetries [4, 6] and recursion operators [2, 4].

Fokas and Fuchssteiner [9] introduced master symmetries, also studied by Oevel and Fuchssteiner [10] and Fuchssteiner [11].

In this paper we obtain a bi-Hamiltonian formulation for the relativistic Toda Lattice (RTL) by introducing two compatible Poisson tensors on $\mathbb{R}^{2 n}$ which, by a suitable projection map onto $\mathbb{R}^{2 n-1}$, reduce to the two compatible Poisson tensors of the RTL. Since one of the Poisson structures introduced on $\mathbb{R}^{2 n}$ is nondegenerate, we have a recursion operator and the bi-Hamiltonian structure of the RTL is, in fact, multi-Hamiltonian. Then, using a method introduced by Fernandes [7] for the nonrelativistic Toda lattice, based on a theorem due to Oevel [8], we determine master symmetries for the RTL. Our results answer a question put by Damianou in [6].

In this paper, all the manifolds, maps, vector and tensor fields are assumed to be smooth. Let us recall that a bi-Hamiltonian manifold is a manifold M equipped with two compatible Poisson tensors Λ_{0} and Λ_{1}; it is denoted by $\left(M, \Lambda_{0}, \Lambda_{1}\right)$. A vector field X on M is said to be a bi-Hamiltonian vector field if it is Hamiltonian with respect to both Poisson structures. A recursion operator for $\left(M, \Lambda_{0}, \Lambda_{1}\right)$ is a vector bundle map $R: T M \rightarrow T M$ such that $\Lambda_{1}^{\sharp}=R \circ \Lambda_{0}^{\sharp}$, where $\Lambda_{0}^{\sharp}: T^{*} M \rightarrow T M$ and $\Lambda_{1}^{\sharp}: T^{*} M \rightarrow T M$ are the vector bundle maps associated with the Poisson tensors Λ_{0} and Λ_{1}. A bi-Hamiltonian manifold for which there exists a recursion operator is called a Poisson-Nijenhuis manifold [12].
§ E-mail address: jmcosta@mat.uc.pt
|| E-mail address: marle@math.jussieu.fr

1. A bi-Hamiltonian formulation for the relativistic Toda lattice

We consider $\mathbb{R}^{2 n}$ with coordinates $\left(q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right)$ and the canonical Poisson tensor

$$
\begin{equation*}
\Lambda_{1}=\sum_{i=1}^{n} \frac{\partial}{\partial q^{i}} \wedge \frac{\partial}{\partial p_{i}} \tag{1}
\end{equation*}
$$

Following Suris [5], we take $\left(c_{1}, \ldots, c_{n-1}, d_{1}, \ldots, d_{n}\right)$ as variables on $\mathbb{R}^{2 n-1}$, with

$$
\begin{equation*}
c_{i}=\exp \left(q^{i}-q^{i+1}+p_{i}\right) \quad d_{i}=\exp \left(p_{i}\right) \tag{2}
\end{equation*}
$$

and we denote by $\pi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n-1}$ the map

$$
\begin{equation*}
\pi:\left(q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right) \mapsto\left(c_{1}, \ldots, c_{n-1}, d_{1}, \ldots, d_{n}\right) \tag{3}
\end{equation*}
$$

The relativistic Toda lattice is an integrable system on $\mathbb{R}^{2 n-1}$, whose equations of motion are

$$
\left\{\begin{array}{l}
\dot{c_{i}}=c_{i}\left(d_{i+1}-d_{i}+c_{i+1}-c_{i-1}\right) \tag{4}\\
\dot{d}_{j}=d_{j}\left(c_{j}-c_{j-1}\right)
\end{array}\right.
$$

where $i=1, \ldots, n-1, j=1, \ldots, n$, with the convention $c_{0}=c_{n}=0$.
The RTL is a bi-Hamiltonian system on $\mathbb{R}^{2 n-1}$ for the following two compatible Poisson tensors,

$$
\begin{align*}
& \bar{\Lambda}_{0}=\sum_{i=1}^{n-1} c_{i}\left(\frac{\partial}{\partial c_{i}} \wedge\left(\frac{\partial}{\partial d_{i}}-\frac{\partial}{\partial d_{i+1}}\right)+\frac{\partial}{\partial d_{i}} \wedge \frac{\partial}{\partial d_{i+1}}\right) \tag{5}\\
& \bar{\Lambda}_{1}=\sum_{i=1}^{n-1} c_{i} \frac{\partial}{\partial c_{i}} \wedge\left(-c_{i+1} \frac{\partial}{\partial c_{i+1}}+d_{i} \frac{\partial}{\partial d_{i}}-d_{i+1} \frac{\partial}{\partial d_{i+1}}\right) \tag{6}
\end{align*}
$$

and the following two Hamiltonians,

$$
\begin{equation*}
\bar{H}_{0}=\sum_{i=1}^{n}\left(c_{i}+d_{i}\right) \quad \bar{H}_{1}=\sum_{i=1}^{n}\left(c_{i-1}\left(c_{i}+d_{i}\right)+\frac{1}{2}\left(c_{i}+d_{i}\right)^{2}\right) \tag{7}
\end{equation*}
$$

We observe indeed that the bi-Hamiltonian vector field

$$
\begin{equation*}
\bar{\Lambda}_{0}^{\#}\left(d \bar{H}_{1}\right)=\bar{\Lambda}_{1}^{\#}\left(d \bar{H}_{0}\right) \tag{8}
\end{equation*}
$$

is the vector field associated with the evolution equations (4) of the RTL. By convention, $c_{0}=c_{n}=0$ in (6) and (7).

We observe that the Poisson bracket associated with $\bar{\Lambda}_{0}$ is linear, while the Poisson bracket associated with $\bar{\Lambda}_{1}$ is quadratic.

A simple computation shows that the map $\pi:\left(\mathbb{R}^{2 n}, \Lambda_{1}\right) \rightarrow\left(\mathbb{R}^{2 n-1}, \bar{\Lambda}_{1}\right)(3)$ is a Poisson morphism. In other words, under that map, the canonical Poisson tensor Λ_{1} on $\mathbb{R}^{2 n}$ reduces to the quadratic Poisson tensor $\bar{\Lambda}_{1}$ on $\mathbb{R}^{2 n-1}$. This behaviour differs from the behaviour of the nonrelativistic Toda lattice, for which the canonical Poisson bracket associated with Λ_{1} reduces to a linear Poisson bracket on $\mathbb{R}^{2 n-1}$.

Our goal is to provide a bi-Hamiltonian formulation on $\mathbb{R}^{2 n}$ for the RTL. Since Λ_{1} is nondegenerate, we will obtain a recursion operator for that system.

The first step is to define a Poisson tensor on $\mathbb{R}^{2 n}$, compatible with the canonical Poisson tensor Λ_{1}, which projects onto $\mathbb{R}^{2 n-1}$ under the map π (3), and has the linear Poisson tensor $\bar{\Lambda}_{0}$ (5) as its projection.

Proposition 1.1. Let Λ_{0} be the bivector on $\mathbb{R}^{2 n}$:

$$
\begin{align*}
\Lambda_{0}=\sum_{i=1}^{n} \exp (& \left.-p_{i}\right) \frac{\partial}{\partial q^{i}} \wedge\left(\frac{\partial}{\partial p_{i}}+\sum_{j=i+1}^{n} \frac{\partial}{\partial q^{j}}\right)+\sum_{i=1}^{n-1} \exp \left(q^{i}-q^{i+1}-p_{i+1}\right) \\
& \times\left(\left(\frac{\partial}{\partial p_{i}}+\frac{\partial}{\partial q^{i+1}}\right) \wedge\left(\frac{\partial}{\partial p_{i+1}}+\sum_{j=i+2}^{n} \frac{\partial}{\partial q^{j}}\right)-\frac{\partial}{\partial p_{i+1}} \wedge \sum_{j=i+2}^{n} \frac{\partial}{\partial q^{j}}\right) \tag{9}
\end{align*}
$$

Then,
(i) $\left[\Lambda_{0}, \Lambda_{0}\right]=0$ and $\left[\Lambda_{0}, \Lambda_{1}\right]=0$;
(ii) $\Lambda_{1}^{\#}\left(d H_{0}\right)=\Lambda_{0}^{\#}\left(d H_{1}\right)$, with

$$
H_{0}=\sum_{i=1}^{n}\left(\exp \left(q^{i}-q^{i+1}+p_{i}\right)+\exp \left(p_{i}\right)\right)
$$

and

$$
\begin{aligned}
& H_{1}=\sum_{i=1}^{n}\left(\frac{1}{2}\left(\exp \left(q^{i}-q^{i+1}+p_{i}\right)+\exp \left(p_{i}\right)\right)^{2}\right. \\
& \left.\quad+\exp \left(q^{i-1}-q^{i}+p_{i-1}\right)\left(\exp \left(q^{i}-q^{i+1}+p_{i}\right)+\exp \left(p_{i}\right)\right)\right)
\end{aligned}
$$

where, by convention, $q^{0}=-\infty$ and $q^{n+1}=+\infty$;
(iii) the map $\pi:\left(\mathbb{R}^{2 n}, \Lambda_{0}\right) \rightarrow\left(\mathbb{R}^{2 n-1}, \bar{\Lambda}_{0}\right)$,

$$
\left(q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right) \mapsto\left(c_{1}, \ldots, c_{n-1}, d_{1}, \ldots, d_{n}\right)
$$

is a Poisson morphism.
Proof. A simple computation leads to the required results. Relations (i) and (ii) prove the existence of a bi-Hamiltonian system on $\mathbb{R}^{2 n}$, while (iii) ensures that Λ_{0} reduces to $\bar{\Lambda}_{0}$.

Since Λ_{0} is nondegenerate, we can define a recursion operator, by setting $R=$ $\Lambda_{1}^{\#} \circ\left(\Lambda_{0}^{\#}\right)^{-1}$. We obtain

$$
R=\left[\begin{array}{cc}
A & B \\
C & A^{T}
\end{array}\right]
$$

where $A=\left[a_{i j}\right], B=\left[b_{i j}\right]$ and $C=\left[c_{i j}\right]$ are $n \times n$ matrices $\left(A^{T}\right.$ is the transpose of $\left.A\right)$, defined as follows (with, by convention, $q^{n+1}=+\infty$):

$$
\begin{aligned}
& \left\{\begin{array}{ll}
a_{i i}=\exp \left(q^{i}-q^{i+1}+p_{i}\right) \\
a_{i, i+1}=\exp \left(q^{i+1}-q^{i+2}+p_{i+1}\right) & \text { if } i>j \\
a_{i j}=0 & \text { if } j>i+1 \\
a_{i j}=\exp \left(q^{j}-q^{j+1}+p_{j}\right)-\exp \left(q^{j-1}-q^{j}+p_{j-1}\right) & \\
\begin{cases}b_{i j}=-b_{j i} \\
b_{i j}=\exp \left(q^{j}-q^{j+1}+p_{j}\right)+\exp \left(p_{j}\right) & \text { if } i<j\end{cases}
\end{array}\right. \text { : }
\end{aligned}
$$

and

$$
\left\{\begin{array}{l}
c_{i+1, i}=-c_{i, i+1}=\exp \left(q^{i}-q^{i+1}+p_{i}\right) \\
c_{i j}=0
\end{array} \quad\right. \text { otherwise }
$$

Since we have a recursion operator R, we can now define on $\mathbb{R}^{2 n}$ an infinite sequence of pairwise compatible Poisson tensors Λ_{k} and an infinite sequence of Hamiltonians H_{k}, by setting $\Lambda_{k}=R^{k} \Lambda_{0}, d H_{k}={ }^{t} R\left(d H_{k-1}\right)$. By the reduction theorem for bi-Hamiltonian
manifolds [13], and taking account of proposition 1.1 (iii), the infinite sequence $\left(\Lambda_{k}\right), k \in \mathbb{N}_{0}$, of higher-order Poisson tensors on $\mathbb{R}^{2 n}$ reduce, under the map π, to an infinite sequence $\left(\bar{\Lambda}_{k}\right), k \in \mathbb{N}_{0}$, of pairwise compatible Poisson tensors on $\mathbb{R}^{2 n-1}$.

For $i=2$, the Poisson tensor Λ_{2} is given by

$$
\begin{aligned}
\Lambda_{2}=\sum_{j=1}^{n-2} \frac{\partial}{\partial q^{j}} & \wedge\left(\exp \left(q^{j+1}-q^{j+2}+p_{j+1}\right) \frac{\partial}{\partial p_{j+1}}\right. \\
& +\sum_{i=j+1}^{n-1}\left(\left(-\exp \left(q^{i+1}-q^{i+2}+p_{i+1}\right)-\exp \left(p_{i+1}\right)\right) \frac{\partial}{\partial q^{i}}\right. \\
& \left.\left.+\left(\exp \left(q^{i+1}-q^{i+2}+p_{i+1}\right)-\exp \left(q^{i}-q^{i+1}+p_{i}\right)\right) \frac{\partial}{\partial p_{i+1}}\right)\right) \\
& +\sum_{i=1}^{n}\left(\left(\exp \left(q^{i}-q^{i+1}+p_{i}\right)+\exp \left(p_{i}\right)\right) \frac{\partial}{\partial q^{i}} \wedge \frac{\partial}{\partial p_{i}}\right. \\
& \left.-\exp \left(q^{i}-q^{i+1}+p_{i}\right) \frac{\partial}{\partial p_{i}} \wedge \frac{\partial}{\partial p_{i+1}}\right)
\end{aligned}
$$

The corresponding reduced Poisson tensor $\bar{\Lambda}_{2}$ on $\mathbb{R}^{2 n-1}$ is the Poisson tensor associated with the cubic Poisson bracket that appears in [6] and also in [4].

2. Master symmetries for the relativistic Toda lattice

Now, we want to find master symmetries for the bi-Hamiltonian system built above, in order to use the method of Fernandes [7], which is based on the following theorem.
Theorem 2.1 (Oevel). Let X_{0} be a vector field on the Poisson-Nijenhuis manifold ($M, \Lambda_{0}, \Lambda_{1}$), such that
$\mathcal{L}\left(X_{0}\right) \Lambda_{0}=\alpha \Lambda_{0} \quad \mathcal{L}\left(X_{0}\right) \Lambda_{1}=\beta \Lambda_{1} \quad$ and $\quad X_{0} \cdot H_{0}=\gamma H_{0}$
with $\alpha, \beta, \gamma \in \mathbb{R}$. Then the vector fields $X_{k}=R^{k} X_{0}$ satisfy, for all $k, l \in \mathbb{N}$,
(i) $\left[X_{k}, X_{l}\right]=(\beta-\alpha)(l-k) X_{k+l}$
(ii) $\left[X_{k}, Y_{l}\right]=(\beta+\gamma+(\beta-\alpha)(l-1)) Y_{k+l}$
(iii) $\mathcal{L}\left(X_{k}\right) \Lambda_{l}=(\beta+(\beta-\alpha)(l-k-1)) \Lambda_{k+l}$
(iv) $X_{k} \cdot H_{l}=(\gamma+(\beta-\alpha)(l+k)) H_{k+l}$.

In order to use this theorem, we need a vector field X_{0} that satisfies conditions (10).
Let us take

$$
\begin{equation*}
X_{0}=\sum_{i=1}^{n} \frac{\partial}{\partial p_{i}} \tag{11}
\end{equation*}
$$

A simple computation leads to

$$
\mathcal{L}\left(X_{0}\right) \Lambda_{0}=-\Lambda_{0} \quad \mathcal{L}\left(X_{0}\right) \Lambda_{1}=0 \quad X_{0} \cdot H_{0}=H_{0}
$$

So we can apply theorem 2.1 with $\alpha=-1, \beta=0$ and $\gamma=1$. Thus we have a hierarchy of master symmetries $X_{k}=R^{k} X_{0}, k \in \mathbb{N}$, that provides a way of obtaining higher-order Poisson tensors on $\mathbb{R}^{2 n}$. These master symmetries satisfy the following conditions:

$$
\begin{align*}
& {\left[X_{k}, X_{l}\right]=(l-k) X_{k+l}} \tag{12}\\
& {\left[X_{k}, \Lambda_{l}^{\#}\left(d H_{0}\right)\right]=l \Lambda_{k+l}^{\#}\left(d H_{0}\right)} \tag{13}\\
& \mathcal{L}\left(X_{k}\right) \Lambda_{l}=(l-k-1) \Lambda_{k+l} \tag{14}\\
& X_{k} \cdot H_{l}=(1+l+k) H_{k+l} . \tag{15}
\end{align*}
$$

Proposition 2.1. The master symmetries $X_{k}=R^{k} X_{0}, k \in \mathbb{N}$, are projectable vector fields by the map $\pi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n-1},\left(q^{i}, p_{i}\right) \mapsto\left(c_{i}, d_{i}\right)$. We denote by \bar{X}_{k} the projected vector fields.

Proof. The fibres of π are integral curves of the vector field

$$
Z=\sum_{i=1}^{n} \frac{\partial}{\partial q^{i}}
$$

Since $Z=-\sum_{i=1}^{n} \Lambda_{1}^{\#}\left(d p_{i}\right)$, this implies $\left[\Lambda_{1}, Z\right]=0$.
Further we obtain, by computation, $\left[\Lambda_{0}, Z\right]=0$ and therefore $[R, Z]=0$. Also, $\left[X_{0}, Z\right]=0$ and we deduce

$$
\left[X_{k}, Z\right]=\left[R^{k} X_{0}, Z\right]=0
$$

For any $f \in C^{\infty}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)$, we have

$$
\begin{aligned}
{\left[X_{k}, f Z\right] } & =\left(X_{k} \cdot f\right) Z+f\left[X_{k}, Z\right] \\
& =\left(X_{k} \cdot f\right) Z
\end{aligned}
$$

which proves that X_{k} is a projectable vector field.
Now, if we take the reduced vector fields \bar{X}_{k}, the reduced Poisson tensors $\bar{\Lambda}_{k}$, the reduced Hamiltonian vector fields $\bar{Y}_{k}=\bar{\Lambda}_{k}^{\#}\left(d \bar{H}_{0}\right)$ and the reduced Hamiltonians \bar{H}_{k} then, taking account of relations (12), (13), (14) and (15), we deduce the following relations:

$$
\begin{align*}
& {\left[\bar{X}_{k}, \bar{X}_{l}\right]=(l-k) \bar{X}_{k+l}} \tag{16}\\
& {\left[\bar{X}_{k}, \bar{Y}_{l}\right]=l \bar{Y}_{k+l}} \tag{17}\\
& \mathcal{L}\left(\bar{X}_{k}\right) \bar{\Lambda}_{l}=(l-k-1) \bar{\Lambda}_{k+l} \tag{18}\\
& \bar{X}_{k} \cdot \bar{H}_{l}=(1+l+k) \bar{H}_{k+l} \tag{19}
\end{align*}
$$

Some of these relations already appeared in [6], although our vector field \bar{X}_{1} differs from the corresponding one in [6]-let us denote it by \dot{X}_{1}, by a bi-Hamiltonian vector field. In fact, we compute

$$
\begin{aligned}
X_{1}=\sum_{i=1}^{n}((1 & -i)\left(\exp \left(q^{i}-q^{i+1}+p_{i}\right)+\exp \left(p_{i}\right)\right) \\
& \left.+\sum_{j=i+1}^{n}\left(\exp \left(q^{j}-q^{j+1}+p_{j}\right)+\exp \left(p_{j}\right)\right)\right) \frac{\partial}{\partial q^{i}} \\
& +\sum_{i=1}^{n}\left(\exp \left(p_{i}\right)+i \exp \left(q^{i}-q^{i+1}+p_{i}\right)+(2-i) \exp \left(q^{i-1}-q^{i}+p_{i-1}\right)\right) \frac{\partial}{\partial p_{i}}
\end{aligned}
$$

where, by convention, $q^{0}=-\infty$ and $q^{n+1}=+\infty$, and X_{1} projects onto

$$
\begin{gathered}
\bar{X}_{1}=\sum_{i=1}^{n}\left(\left((1+i) c_{i}\left(c_{i+1}+d_{i+1}\right)+(2-i) c_{i}\left(c_{i-1}+d_{i}\right)+c_{i}^{2}\right) \frac{\partial}{\partial c_{i}}\right. \\
\left.+\left(i c_{i} d_{i}+(2-i) c_{i-1} d_{i}+d_{i}^{2}\right) \frac{\partial}{\partial d_{i}}\right)
\end{gathered}
$$

where, by convention, $c_{0}=c_{n}=0$. Comparing \bar{X}_{1} with \dot{X}_{1}, we obtain

$$
\dot{X}_{1}-\bar{X}_{1}=\bar{\Lambda}_{1}^{\#}\left(d \bar{H}_{0}\right)=\bar{\Lambda}_{0}^{\#}\left(d \bar{H}_{1}\right)
$$

Since the difference is the bi-Hamiltonian vector field $\bar{\Lambda}_{1}^{\#}\left(d \bar{H}_{0}\right)$, our higher-order Poisson tensors $\bar{\Lambda}_{k}$ coincide with those of [6].

Acknowledgment

This work was partially supported by PRAXIS/2/2.1/MAT/19/94.

References

[1] Ruijsenaars S N 1990 Relativistic Toda systems Commun. Math. Phys. 133217
[2] Bruschi M and Ragnisco O 1988 Recursion operator and Bäcklund transformations for the Ruijsenaars Toda lattice Phys. Lett. 129A 21
[3] Bruschi M and Ragnisco O 1989 Lax representations and complete integrability for the periodic relativistic Toda lattice Phys. Lett. A 134365
[4] Oevel W, Fuchssteiner B, Zhang H and Ragnisco O 1989 Mastersymmetries, angle variables, and recursion operator of the relativistic Toda lattice J. Math. Phys. 302664
[5] Suris Yu B 1993 On the bi-Hamiltonian structure of Toda and relativistic Toda lattices Phys. Lett. A 180419
[6] Damianou P 1994 Multiple Hamiltonian structures for Toda systems J. Math. Phys. 355511
[7] Fernandes R L 1993 On the master symmetries and bi-Hamiltonian structure of the Toda lattice J. Phys. A: Math. Gen. 263797
[8] Oevel W 1987 A geometrical approach to integrable systems admitting time dependent invariants Topics in Soliton Theory and Exactly Solvable Nonlinear Equations ed M Ablowitz, B Fuchssteiner and M Kruskal (Singapore: World Scientific)
[9] Fokas A S and Fuchssteiner B 1981 The hierarchy of Benjamin-Ono equations Phys. Lett. 86A 341
[10] Oevel W and Fuchssteiner B 1982 Explicit formulas for Symmetries and conservation laws of the KadomtsevPetviashvili equation Phys. Lett. 88A 323
[11] Fuchssteiner B 1983 Mastersymmetries and higher order time-dependent symmetries and conserved densities of nonlinear evolution equations Prog. Theor. Phys. 701508
[12] Magri F and Morosi C 1984 A geometrical characterisation of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds Quaderno S 19 Università de Milano
[13] Nunes da Costa J M and Marle C-M 1996 Reduction of bihamiltonian manifolds and recursion operators Differential Geometry and Applications (Proc. 6th Int. Conf., Brno, 28 August-1 September 1995) ed J Janyška, I Kolář and J Slovák (Brno: Masaryk University) pp 523-38

